Macroscopic quantum resonators (MAQRO): 2015 Update

Author(s): Č. Brukner

arXiv-Citation:
arXiv:1503.02640 [quant-ph]

Link: Link to publication

Abstract:

Do the laws of quantum physics still hold for macroscopic objects - this is at the heart of Schr\"odinger's cat paradox - or do gravitation or yet unknown effects set a limit for massive particles? What is the fundamental relation between quantum physics and gravity? Ground-based experiments addressing these questions may soon face limitations due to limited free-fall times and the quality of vacuum and microgravity. The proposed mission MAQRO may overcome these limitations and allow addressing those fundamental questions. MAQRO harnesses recent developments in quantum optomechanics, high-mass matter-wave interferometry as well as state-of-the-art space technology to push macroscopic quantum experiments towards their ultimate performance limits and to open new horizons for applying quantum technology in space. The main scientific goal of MAQRO is to probe the vastly unexplored "quantum-classical" transition for increasingly massive objects, testing the predictions of quantum theory for truly macroscopic objects in a size and mass regime unachievable in ground-based experiments. The hardware for the mission will largely be based on available space technology. Here, we present the MAQRO proposal submitted in response to the (M4) Cosmic Vision call of the European Space Agency for a medium-size mission opportunity with a possible launch in 2025.

Brukner Group Brukner Group