Computational complexity in electronic structure

Author(s): J.D. Whitfield, P.J. Love, A. Aspuru-Guzik

Journal: Phys. Chem. Chem. Phys.

Volume: 15

Page(s): 397-411

Year: 2012

DOI Number: 10.1039/C2CP42695A

Link: Link to publication


In quantum chemistry, the price paid by all known efficient model chemistries is either the truncation of the Hilbert space or uncontrolled approximations. Theoretical computer science suggests that these restrictions are not mere shortcomings of the algorithm designers and programmers but could stem from the inherent difficulty of simulating quantum systems. Extensions of computer science and information processing exploiting quantum mechanics has led to new ways of understanding the ultimate limitations of computational power. Interestingly, this perspective helps us understand widely used model chemistries in a new light. In this article, the fundamentals of computational complexity will be reviewed and motivated from the vantage point of chemistry. Then recent results from the computational complexity literature regarding common model chemistries including Hartree–Fock and density functional theory are discussed.


File: Link to PDF

Verstraete Group Verstraete Group