Quantenverschränkung erstmals live auf Kamera

Workgroup Zeilinger Group


29. May 2013  — Die intuitiv schwer nachvollziehbaren Folgen der Quantenverschränkung wurden erstmals direkt mit einer Kamera festgehalten. Ein Forscherteam rund um den Wiener Physiker Anton Zeilinger zeigt mit Hilfe eines neuartigen Aufnahmeverfahrens in Echtzeit, wie sich eine Messung an einem Lichtteilchen auf ein mit ihm verschränkten Partnerteilchen auswirkt. Die dafür entwickelte Methode könnte nicht nur zukünftige Experimente vereinfachen, sondern bietet auch eine elegante Möglichkeit, das Phänomen der Quantenverschränkung sichtbar und damit besser begreifbar zu machen. Diese Arbeit wurde in den Labors des Vienna Center for Quantum Science and Technology (VCQ) an der Universität Wien und des Instituts für Quantenoptik und Quanteninformation (IQOQI) der Österreichischen Akademie der Wissenschaften durchgeführt und die Ergebnisse in "Scientific Reports", der Open-Access- Zeitschrift des Herausgebers des renommierten Fachjournals "Nature", publiziert.



Die Verschränkung zweier oder mehrere Objekte ist eines der grundlegendsten Phänomene der Quantenphysik, aber auch eines, welches unserer Intuition besonders deutlich widerstrebt. Verschränkte Teilchen verhalten sich nämlich so, als ob sie sich gegenseitig selbst dann beeinflussen könnten, wenn sie räumlich weit voneinander entfernt sind. Dies steht in krassem Widerspruch zur klassischen Physik, wo Abläufe ausschließlich durch räumlich nahe Ereignisse beeinflusst werden. Albert Einstein bezeichnete die von der Quantentheorie vorhergesagte ortsunabhängige Einflussnahme eines Teilchens auf ein anderes als "spukhafte Fernwirkung" und war überzeugt, dass dieses "Paradoxon" darauf hinweist, dass die Quantentheorie ergänzt werden muss, wenn sie Vorgänge in der Natur komplett beschrieben soll.

In den vergangenen vierzig Jahren wurden jedoch zahlreiche Experimente durchgeführt, die eindeutig zeigen, dass diese Fernwirkung in der Tat existiert. Die Resultate dieser Versuche sind klar: die Quantenphysik kann Beobachtungen korrekt und vollständig beschreiben, selbst wenn diese mit unserer Alltagserfahrung nicht in Einklang zu bringen sind. Diese wichtigen Experimente haben aber nur beschränkt dazu beigetragen, ein intuitives Gefühl für das Phänomen der Verschränkung zu entwickeln. Zu sehr basieren die Schlüsse auf Berechnungen. Mit dem Versuch der Wiener Physiker, in denen sie erstmals die verblüffenden Verschränkungseffekte mit einer Kamera festhalten, wird das Phänomen nun augenscheinlich. "In diesem Experiment ist es erstmals möglich, Einsteins spukhafte Fernwirkung anschaulich in Echtzeit zu sehen", sagt Anton Zeilinger.

Echtzeitaufnahmen von verschränkten Photonen

In den neuen Experimenten wurden mittels einer kürzlich entwickelten Methode Paare verschränkter Lichtteilchen, sogenannter Photonen, erzeugt. Eines der beiden Teilchen ist so gewählt, dass ein komplexes räumliches Muster entsteht, wenn eine große Zahl von Photonen mit Hilfe einer hochsensitiven Kamera aufgenommen werden - vorausgesetzt, dass diese jeweils zum richtigen Zeitpunkt ausgelöst wird. Als Startsignal zur Echtzeitaufnahme dient das zweite Photon, welches in einer herkömmlichen Messapparatur detektiert wird. Das mit der Kamera aufgenommene Photon muss erst mehr als 35 Meter durch eine Glasfaser zurücklegen, ehe es "fotografiert" wird. Dort angekommen, hängt das beobachtete Muster jedoch davon ab, was genau mit dem ersten Teilchen geschehen ist. "Die Einstellung der Messapparatur für das erste Teilchen bestimmt, wie das Muster aussieht, welches das zweite Teilchen auf der Kamera hinterlässt, und dies, obwohl die beiden Messgeräte unabhängig voneinander sind und verschiedene Photonen messen, die deutlich räumlich voneinander getrennt sind", erklärt Robert Fickler, Erstautor der Arbeit. Das Startsignal enthält keine Information darüber, wie genau das erste Photon gemessen wurde, und auch sonst erhält die Kamera keine Auskunft über die Einstellungen der anderen Messapparatur. Aber trotzdem hängt das von der Kamera gemessene Muster von der vorhergehenden Messung am ersten Photon ab - genau, wie die Quantentheorie es voraussagt.

Mit diesem Experiment wird die durch die Quantenverschränkung vermittelte Fernwirkung erstmals direkt sichtbar, nicht nur in abstrakten Zahlenwerten, sondern in anschaulichen Bildern. Gleichzeitig sind diese Versuche aber mehr als ein Demonstrationsexperiment. Die neu entwickelte Methode ermöglicht es, komplexe Lichtstrukturen schnell und effizient zu detektieren. Dies könnte neue Perspektiven für zukünftige Anwendungen eröffnen, sagt Zeilinger: "Die hohe zeitliche und örtliche Auflösung, mit der wir Quanteneffekte messen können, bietet neue experimentelle Möglichkeiten inden Gebieten der Quantenoptik und der Quantentechnologien, etwa im Bereich der Quanteninformatik oder der Quantenkryptographie."

Die Forschung wurde gefördert durch den Europäischen Forschungsrat (ERC) sowie dem österreichischen Fonds zur Förderung der wissenschaftlichen Forschung (FWF).